Detector Array for Low Intensity radiation

DALI and DALI2

S.Takeuchi, T.Motobayashi

Heavy Ion Nuclear Physics Laboratory, RIKEN H.Murakami, K.Demichi, H.Hasegawa, Y.Togano Department of Physics, Rikkyo University

γ-RAY SPECTROSCOPY WITH UNSTABLE NUCELI

- Unstable nuclei
 - Low Beam intensity

 \rightarrow High detection efficiency

- Fast secondary beams
 - RARF ($\beta \sim 0.3$) and RIBF ($\beta \sim 0.6$)
 - → Doppler Shift

Depending on the emission angle

 \rightarrow High angular resolution for High energy resolution

DALI

Previous system (typical spec.) up to 68 NaI(TI) detectors angular resolution : ~15 degree efficiency : about 15% for 1MeV

³²Mg(p,p') β~0.3

H.Hasegawa, Master's thesis, Rikkyo Univ., 2003

DEVELOPMENT of A NEW ARRAY

MOTIVATION:

- For More neutron-rich nuclei : Low Intensity
- For using at RIBF : Fast beam

REQUIREMENTS:

- Higher Efficiency
- Higher Angular Resolution
 - ↔ High Energy Resolution
 - Angular Distribution measurements

\downarrow

160 Nal(TI) Detectors

Large Volume and Many Segments

DOPPLER SHIFT and BROADENING

OVERVIEW – DALI2 –

160 Nal(TI) detectors

Each detector

- 4.5 x 8 x 16 (cm³)
- $\Delta E/E \sim 9\% @ 662 keV$

Array

- 16 layers
- 6~14 detectors in each layer

SPECIFICATION

SAINT-GOBAIN x 80 detectors - 45 x 80 x 160 (mm)

– About 8%@662keV (¹³⁷Cs)

SCIONIX x 80 detectors - 40 x 80 x 160 (mm) - About 9%@662keV(¹³⁷Cs)

Half of DALI2

EXPERIMENT ROOM (E6 RIPS beam-line)

and DALI2

	DALI	DALI2
Arrangement	Brick wall like Hedgehog like	
Size	6 x 6 x 12 (cm³)	4.5 x 8 x 16 (cm ³)
# of Detectors	68	160
Volume	~ 30 liter	~ 90 liter
# of Layers	6 - 8	16
Angular resolution	~ 15 degree	~ 8 degree
Energy resolution (β~0.3)	12% @ 1MeV	8% @ 1MeV
Efficiency (β~0.3)	15% @1MeV	21% @1MeV

IMPROVEMENT of ENERGY RESOLUTION

¹²Be(α , α ')¹²Be^{*}

- $E\gamma = 2100 \text{ keV}, \beta \sim 0.3$
- (a) : DALI ($\Delta \theta \sim 15^{\circ}$) $\Delta E/E = 9.8\%$ (FWHM)
- (b) : DALI2 ($\Delta \theta \sim 8^{\circ}$) $\Delta E/E = 6.6\%$ (FWHM)

IMPROVEMENT of ANGULAR DISTRIBUTION

2004/12/27 高エネルギー宇宙・原子核交流促進 γ線検出器ワークショップ

- **・**などなど。
- ²²O(d,p)²³O
- ¹⁹C(p,p')¹⁹C*
- ⁷⁸⁻⁸²Ge Coulex
- ²⁶Ne(Pb,Pb)²⁶Ne^{*}
- ⁴He(²²O,²³F^{*})
- ²⁷F(p,p')²⁷F^{*}, ¹⁶C(p,p')¹⁶C^{*}
- ⁵⁴Ni,⁵⁰Fe,⁴⁶Cr Coulex
- ${}^{12}\text{Be}(\alpha, \alpha'){}^{12}\text{Be}^*, {}^{12}\text{Be}(\alpha, t){}^{13}\text{B}^*$

PAST EXPERIMENTS with DALI2

(CNS, Rikkyo, RIKEN) (Rikkyo, RIKEN) (ATOMKI, Tokyo, RIKEN) (CNS, RIKEN) (Orsay, TIT, RIKEN) (Tokyo, RIKEN) (ATOMKI, RIKEN) (ATOMKI, RIKEN)

EXAMPLES – ⁶⁶Fe(p,p')⁶⁶Fe^{*} –

2004/12/27 高エネルギー宇宙・原子核交流促進 γ 線検出器ワークショップ

Efficiency and Resolution

GEANT3 simulation with target chamber and holder

$$\beta = 0.3$$
(RARF), 0.6(RIBF)
E $\gamma = 0.5$, 1.0, 2.0 MeV

	0.5 MeV	1.0 MeV	2.0 MeV
Eff. (β=0.3)	34%	21%	12%
Res. (<i>β</i> =0.3)	11.6%	8.0%	6.5%
Eff. (<i>β</i> =0.6)	31%	18%	8%
Res. (<i>β</i> =0.6)	14.8%	12.3%	9.8%

SUMMARY

- We have developed DALI2 for in-beam γ -ray spectroscopy with fast unstable nuclei (@RIBF).
- The performance is improved compared with DALI.
 - Energy Resolution $\Delta E/E \sim 8\%@1 MeV$
 - Detection Efficiency $\varepsilon \sim 21\%@1 \text{MeV}$
- Several experiments have already done with DALI2 and we are planning experiments with low intensity beam and/or measuring $\gamma-\gamma$ coincidence.

COMING EXPERIMENTS with DALI2

- Inelastic scattering of 64Cr (running)
- $\gamma \gamma$ coincidence of ³²Mg and ³⁴Si
- Inelastic scattering of ⁴²Si

With Liquid hydrogen and/or helium targets

FUTURE EXPERIMENTS in RIBF

Efficiency and Energy resolution : 18% and 12% for 1MeV (β ~0.6) Target : More neutron-rich nuclei (ex. ⁷⁸Ni > 0.1 cps) Possible array for higher efficiency and energy resolution is the combination of DALI and DALI2. \rightarrow '1+2=3' DALI3?